Physical Activity as a Moderator of Stress and Its Effects on Cognitive Performance
DOI:
https://doi.org/10.31305/rrjss.2024.v04.n01.005Keywords:
Physical Activity, Stress, Cognitive Performance, BDNF, Executive FunctionAbstract
Stress is a prevalent and growing concern among adults aged 20–45, adversely affecting cognitive functions such as memory, attention, and executive processing. This research explores the moderating role of physical activity (PA) in the relationship between stress and cognitive performance. Grounded in the Cognitive Load Theory and Allostatic Load Model, the article highlights how chronic stress impairs brain regions like the hippocampus and prefrontal cortex through elevated cortisol and neurochemical imbalance. In contrast, regular PA stimulates brain-derived neurotrophic factor (BDNF), regulates the hypothalamic-pituitary-adrenal (HPA) axis, and enhances neuroplasticity - thereby improving cognitive resilience. Empirical studies affirm that individuals engaging in moderate PA experience reduced cognitive decline under stress and demonstrate improved reaction time, working memory, and mental flexibility. The benefits follow a dose-response relationship, with 150 minutes of moderate-intensity activity per week being most effective. Applications in educational settings, workplace wellness programs, and mental health interventions show that integrating PA into daily routines significantly reduces stress and enhances cognitive functioning. This article concludes that PA is a practical, low-cost, and non-pharmacological strategy for buffering stress and preserving cognitive health, meriting inclusion in both public health policy and individual lifestyle management.
References
Sandi, C. (2013). “Stress and Cognition.” Wiley Interdisciplinary Reviews: Cognitive Science, 4(3), 245–261. 245–261. https://doi.org/10.1002/wcs.1222 DOI: https://doi.org/10.1002/wcs.1222
Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. https://doi.org/10.1038/nrn2639 DOI: https://doi.org/10.1038/nrn2639
Ratey, J. J. (2008). Spark: The Revolutionary New Science of Exercise and the Brain. Little, Brown.
Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). “Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition.” Nature Reviews Neuroscience, 9(1), 58–65. https://doi.org/10.1038/nrn2298 DOI: https://doi.org/10.1038/nrn2298
Ministry of Youth Affairs & Sports. (2021). Youth Fitness and Lifestyle Survey Report 2021. Government of India.
National Institute of Mental Health and Neurosciences (NIMHANS). (2021). National Mental Health Survey of India 2021. Bengaluru: Ministry of Health & Family Welfare.
Op.cit., Ministry of Youth Affairs & Sports. (2021).
Indian Council of Medical Research (ICMR). (2022). Mental Health Dataset: Urban India Analysis. New Delhi.
World Health Organization – India. (2021). Physical Activity Profile: India.
Gerber, M., Brand, S., Holsboer-Trachsler, E., & Pühse, U. (2013). Fitness and exercise as correlates of sleep complaints: Is it all in our minds? Medicine & Science in Sports & Exercise, 45(5), 823–832. https://doi.org/10.1249/MSS.0b013e31827f0d90
Smith, A. L., Plotnikoff, R. C., & Lubans, D. R. (2014). Physical activity reduces perceived stress and improves cognitive performance in high-stress adults. Journal of Health Psychology, 19(3), 346–356. https://doi.org/10.1177/1359105312473782 DOI: https://doi.org/10.1111/bjhp.12085
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4 DOI: https://doi.org/10.1016/0364-0213(88)90023-7
Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences (PNAS), 106(3), 912–917. https://doi.org/10.1073/pnas.0807041106 DOI: https://doi.org/10.1073/pnas.0807041106
Op.cit., Hillman, C. H. et.al. (2008).
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4–12 years old. Science, 333(6045), 959–964. https://doi.org/10.1126/science.1204529 DOI: https://doi.org/10.1126/science.1204529
McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101. https://doi.org/10.1001/archinte.1993.00410180039004 DOI: https://doi.org/10.1001/archinte.1993.00410180039004
Op.cit., Lupien, S. J., et al. (2009).
McEwen, B. S. (2006). Protective and damaging effects of stress mediators: central role of the brain. Dialogues in Clinical Neuroscience, 8(4), 367–381. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3181832/ DOI: https://doi.org/10.31887/DCNS.2006.8.4/bmcewen
Gomez-Pinilla, F., & Hillman, C. (2013). The influence of exercise on cognitive abilities. Comprehensive Physiology, 3(1), 403–428. https://doi.org/10.1002/cphy.c110063 DOI: https://doi.org/10.1002/j.2040-4603.2013.tb00485.x
Op.cit., Lupien, S. J., et al. (2009).
Op.cit., McEwen, B. S. (2006).
Op.cit., Liston, C., et.al. (2009).
Sapolsky, R.M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57(10), 925–935. https://doi.org/10.1001/archpsyc.57.10.925 DOI: https://doi.org/10.1001/archpsyc.57.10.925
Arnsten, A.F.T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience, 10(6), 410–422. https://doi.org/10.1038/nrn2648 DOI: https://doi.org/10.1038/nrn2648
Lupien, S.J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T.E. (2005). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65(3), 209–237. https://doi.org/10.1016/j.bandc.2007.02.007 DOI: https://doi.org/10.1016/j.bandc.2007.02.007
Op.cit., Sandi, C. (2013).
Shields, G. S., Sazma, M. A., McCullough, A. M., & Yonelinas, A. P. (2018). The effects of acute stress on executive functions: A meta-analysis and comparison with cortisol. Neuroscience & Biobehavioral Reviews, 68, 651–668. https://doi.org/10.1016/j.neubiorev.2016.06.038 DOI: https://doi.org/10.1016/j.neubiorev.2016.06.038
Op.cit., Ratey, J. J. (2008).
Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. https://doi.org/10.1016/j.tins.2007.06.011 DOI: https://doi.org/10.1016/j.tins.2007.06.011
Tsatsoulis, A., & Fountoulakis, S. (2006). The protective role of exercise on stress system dysregulation and comorbidities. Annals of the New York Academy of Sciences, 1083(1), 196–213. https://doi.org/10.1196/annals.1367.020 DOI: https://doi.org/10.1196/annals.1367.020
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., ... & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108 DOI: https://doi.org/10.1073/pnas.1015950108
Craft, L. L., & Perna, F. M. (2004). The benefits of exercise for the clinically depressed. Primary Care Companion to the Journal of Clinical Psychiatry, 6(3), 104-111. https://doi.org/10.4088/PCC.v06n0301 DOI: https://doi.org/10.4088/PCC.v06n0301
Ross, A., & Thomas, S. (2010). The health benefits of yoga and exercise: A review of comparison studies. The Journal of Alternative and Complementary Medicine, 16(1), 3–12. https://doi.org/10.1089/acm.2009.0044 DOI: https://doi.org/10.1089/acm.2009.0044
Deslandes, A. C., et al. (2020). Physical activity and mental health indicators in adults: A population-based study. Mental Health & Physical Activity, 18, 100328. https://doi.org/10.1016/j.mhpa.2020.100328 DOI: https://doi.org/10.1016/j.mhpa.2020.100328
Rebar, A. L., Stanton, R., Geard, D., Short, C., Duncan, M. J., & Vandelanotte, C. (2015). A meta-meta-analysis of the effect of physical activity on depression and anxiety in non-clinical adult populations. Health Psychology Review, 9(3), 366–378. https://doi.org/10.1080/17437199.2015.1022901 DOI: https://doi.org/10.1080/17437199.2015.1022901
Op.cit., Hillman, C. H. et.al. (2008).
Nguyen, T., Vuong, Q. H., La, V. P., Nguyen, H. T. T., Tran, T., Ho, M. T., ... & Ho, M. T. (2020). Effects of physical activity on workplace cognitive performance. Occupational Medicine, 70(5), 320–327. https://doi.org/10.1093/occmed/kqaa077 DOI: https://doi.org/10.1093/occmed/kqaa077
Op.cit., Rebar, A. L., et al. (2015).
Op.cit., Hillman, C. H. et.al. (2008).
Op.cit., Gerber, M., et al. (2013).
Op.cit., Smith, A. L., et al. (2014).
World Health Organization. (2021). WHO Guidelines on Physical Activity and Sedentary Behaviour. Geneva. https://www.who.int/publications/i/item/9789240015128
Op.cit., Tsatsoulis, A., & Fountoulakis, S. (2006).
Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., ... & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Medicine & Science in Sports & Exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901 DOI: https://doi.org/10.1249/MSS.0000000000000901
Op.cit., Ratey, J. J. (2008).
Gothe, N. P., Pontifex, M. B., Hillman, C. H., & McAuley, E. (2013). The acute effects of yoga on executive function. Journal of Physical Activity & Health, 10(4), 488–495. https://doi.org/10.1123/jpah.10.4.488 DOI: https://doi.org/10.1123/jpah.10.4.488
American Psychological Association. (2023). Work and Well-being Survey Results. https://www.apa.org/news/press/releases/stress/2023/report
Oppezzo, M., & Schwartz, D. L. (2014). Give your ideas some legs: The positive effect of walking on creative thinking. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(4), 1142–1152. https://doi.org/10.1037/a0036577 DOI: https://doi.org/10.1037/a0036577
Josefsson, T., Lindwall, M., & Archer, T. (2014). Physical exercise intervention in depressive disorders: Meta-analysis and systematic review. Scandinavian Journal of Medicine & Science in Sports, 24(2), 259–272. https://doi.org/10.1111/sms.12050 DOI: https://doi.org/10.1111/sms.12050